qxLib
easing_functions.h
Go to the documentation of this file.
1 /**
2 
3  @file easing_functions.h
4  @brief File contains easing functions
5  @details See https://doc.magnum.graphics/magnum/namespaceMagnum_1_1Animation_1_1Easing.html
6  for details
7  For all y = f(x):
8  0.0 <= x <= 1.0
9  f(0.0) = 0.0 (with epsilon = qx::easing::eps<T>())
10  f(1.0) = 1.0 (with epsilon = qx::easing::eps<T>())
11  @author Khrapov
12  @date 4.05.2021
13  @copyright © Nick Khrapov, 2021. All right reserved.
14 
15 **/
16 #pragma once
17 
18 #include <qx/math/common.h>
19 
20 #include <cmath>
21 #include <functional>
22 #include <numbers>
23 
24 namespace qx::easing
25 {
26 
27 // ------------------------------- function type -------------------------------
28 
29 template<class T>
30 using func = std::function<T(T)>;
31 
32 // ---------------------- epsilon for borders guarantees -----------------------
33 
34 template<class T>
35 constexpr T eps()
36 {
37  return T(1e-14f);
38 }
39 
40 template<>
41 constexpr float eps()
42 {
43  return 1e-6f;
44 }
45 
46 // ----------------------------- easing functions ------------------------------
47 
48 template<class T>
49 inline T linear_func(T x) noexcept
50 {
51  return x;
52 }
53 constexpr auto linear = linear_func<float>;
54 
55 
56 
57 template<class T>
58 inline T step_func(T x) noexcept
59 {
60  return x < T(0.5f) ? T(0.0f) : T(1.0f);
61 }
62 constexpr auto step = step_func<float>;
63 
64 
65 
66 template<class T>
67 inline T smooth_step_func(T x) noexcept
68 {
69  if (epsilon_less_equal(x, T(0.0f)))
70  return T(0.0f);
71  else if (epsilon_greater_equal(x, T(1.0f)))
72  return T(1.0f);
73  else
74  return (T(3.0f) - T(2.0f) * x) * std::pow(x, T(2.0f));
75 }
76 constexpr auto smooth_step = smooth_step_func<float>;
77 
78 
79 
80 template<class T>
81 inline T smoother_step_func(T x) noexcept
82 {
83  if (epsilon_less_equal(x, T(0.0f)))
84  return T(0.0f);
85  else if (epsilon_greater_equal(x, T(1.0f)))
86  return T(1.0f);
87  else
88  return std::pow(x, T(3.0f)) * (x * (x * T(6.0f) - T(15.0f)) + T(10.0f));
89 }
90 constexpr auto smoother_step = smoother_step_func<float>;
91 
92 
93 
94 template<class T>
95 inline T quadratic_in_func(T x) noexcept
96 {
97  return std::pow(x, T(2.0f));
98 }
99 constexpr auto quadratic_in = quadratic_in_func<float>;
100 
101 
102 
103 template<class T>
104 inline T quadratic_out_func(T x) noexcept
105 {
106  return -x * (x - T(2.0f));
107 }
108 constexpr auto quadratic_out = quadratic_out_func<float>;
109 
110 
111 
112 template<class T>
113 inline T quadratic_in_out_func(T x) noexcept
114 {
115  if (x < T(0.5f))
116  return T(2.0f) * std::pow(x, T(2.0f));
117  else
118  return T(1.0f) - T(2.0f) * std::pow(T(1.0f) - x, T(2.0f));
119 }
120 constexpr auto quadratic_in_out = quadratic_in_out_func<float>;
121 
122 
123 
124 template<class T>
125 inline T cubic_in_func(T x) noexcept
126 {
127  return std::pow(x, T(3.0f));
128 }
129 constexpr auto cubic_in = cubic_in_func<float>;
130 
131 
132 
133 template<class T>
134 inline T cubic_out_func(T x) noexcept
135 {
136  return std::pow(x - T(1.0f), T(3.0f)) + T(1.0f);
137 }
138 constexpr auto cubic_out = cubic_out_func<float>;
139 
140 
141 
142 template<class T>
143 inline T cubic_in_out_func(T x) noexcept
144 {
145  if (x < T(0.5f))
146  return T(4.0f) * std::pow(x, T(3.0f));
147  else
148  return T(1.0f) - T(4.0f) * std::pow(T(1.0f) - x, T(3.0f));
149 }
150 constexpr auto cubic_in_out = cubic_in_out_func<float>;
151 
152 
153 
154 template<class T>
155 inline T quartic_in_func(T x) noexcept
156 {
157  return std::pow(x, T(4.0f));
158 }
159 constexpr auto quartic_in = quartic_in_func<float>;
160 
161 
162 
163 template<class T>
164 inline T quartic_out_func(T x) noexcept
165 {
166  return T(1.0f) - std::pow(T(1.0f) - x, T(4.0f));
167 }
168 constexpr auto quartic_out = quartic_out_func<float>;
169 
170 
171 
172 template<class T>
173 inline T quartic_in_out_func(T x) noexcept
174 {
175  if (x < T(0.5f))
176  return 8 * std::pow(x, T(4.0f));
177  else
178  return T(1.0f) - T(8.0f) * std::pow(T(1.0f) - x, T(4.0f));
179 }
180 constexpr auto quartic_in_out = quartic_in_out_func<float>;
181 
182 
183 
184 template<class T>
185 inline T quintic_in_func(T x) noexcept
186 {
187  return std::pow(x, T(5.0f));
188 }
189 constexpr auto quintic_in = quintic_in_func<float>;
190 
191 
192 
193 template<class T>
194 inline T quintic_out_func(T x) noexcept
195 {
196  return T(1.0f) + std::pow(x - T(1.0f), T(5.0f));
197 }
198 constexpr auto quintic_out = quintic_out_func<float>;
199 
200 
201 
202 template<class T>
203 inline T quintic_in_out_func(T x) noexcept
204 {
205  if (x < T(0.5f))
206  return T(16.0f) * std::pow(x, T(5.0f));
207  else
208  return T(1.0f) - T(16.0f) * std::pow(T(1.0f) - x, T(5.0f));
209 }
210 constexpr auto quintic_in_out = quintic_in_out_func<float>;
211 
212 
213 
214 template<class T>
215 inline T sine_in_func(T x) noexcept
216 {
217  return T(1.0f) + static_cast<T>(std::sin(std::numbers::pi_v<T> / T(2.0f) * (x - T(1.0f))));
218 }
219 constexpr auto sine_in = sine_in_func<float>;
220 
221 
222 
223 template<class T>
224 inline T sine_out_func(T x) noexcept
225 {
226  return static_cast<T>(std::sin(std::numbers::pi_v<T> / T(2.0f) * x));
227 }
228 constexpr auto sine_out = sine_out_func<float>;
229 
230 
231 
232 template<class T>
233 inline T sine_in_out_func(T x) noexcept
234 {
235  return T(0.5f) * (T(1.0f) - static_cast<T>(std::cos(x * std::numbers::pi_v<T>)));
236 }
237 constexpr auto sine_in_out = sine_in_out_func<float>;
238 
239 
240 
241 template<class T>
242 inline T circular_in_func(T x) noexcept
243 {
244  return T(1.0f) - std::sqrt(T(1.0f) - std::pow(x, T(2.0f)));
245 }
246 constexpr auto circular_in = circular_in_func<float>;
247 
248 
249 
250 template<class T>
251 inline T circular_out_func(T x) noexcept
252 {
253  return std::sqrt((T(2.0f) - x) * x);
254 }
255 constexpr auto circular_out = circular_out_func<float>;
256 
257 
258 
259 template<class T>
260 inline T circular_in_out_func(T x) noexcept
261 {
262  if (x < T(0.5f))
263  {
264  return T(0.5f) * (T(1.0f) - std::sqrt(T(1.0f) - T(4.0f) * std::pow(x, T(2.0f))));
265  }
266  else
267  {
268  return T(0.5f) * (T(1.0f) + std::sqrt(-T(4.0f) * std::pow(x, T(2.0f)) + T(8.0f) * x - T(3.0f)));
269  }
270 }
271 constexpr auto circular_in_out = circular_in_out_func<float>;
272 
273 
274 
275 template<class T>
276 inline T exponential_in_func(T x) noexcept
277 {
278  return x <= T(0.0f) ? T(0.0f) : std::pow(T(2.0f), T(10.0f) * (x - T(1.0f)));
279 }
280 constexpr auto exponential_in = exponential_in_func<float>;
281 
282 
283 
284 template<class T>
285 inline T exponential_out_func(T x) noexcept
286 {
287  return x >= T(1.0f) ? T(1.0f) : T(1.0f) - std::pow(T(2.0f), -T(10.0f) * x);
288 }
289 constexpr auto exponential_out = exponential_out_func<float>;
290 
291 
292 
293 template<class T>
294 inline T exponential_in_out_func(T x) noexcept
295 {
296  if (x <= T(0.0f))
297  return T(0.0f);
298  else if (x < T(0.5f))
299  return T(0.5f) * std::pow(T(2.0f), T(20.0f) * x - T(10.0f));
300  else if (x < T(1.0f))
301  return T(1.0f) - T(0.5f) * std::pow(T(2.0f), T(10.0f) - T(20.0f) * x);
302  else
303  return T(1.0f);
304 }
305 constexpr auto exponential_in_out = exponential_in_out_func<float>;
306 
307 
308 
309 template<class T>
310 inline T elastic_in_func(T x) noexcept
311 {
312  return std::pow(T(2.0f), T(10.0f) * (x - T(1.0f)))
313  * static_cast<T>(std::sin(T(13.0f) * std::numbers::pi_v<T> / T(2.0f) * x));
314 }
315 constexpr auto elastic_in = elastic_in_func<float>;
316 
317 
318 
319 template<class T>
320 inline T elastic_out_func(T x) noexcept
321 {
322  return T(1.0f)
323  - std::pow(T(2.0f), -T(10.0f) * x)
324  * static_cast<T>(std::sin(T(13.0f) * std::numbers::pi_v<T> / T(2.0f) * (x + T(1.0f))));
325 }
326 constexpr auto elastic_out = elastic_out_func<float>;
327 
328 
329 
330 template<class T>
331 inline T elastic_in_out_func(T x) noexcept
332 {
333  if (x < T(0.5f))
334  {
335  return T(0.5f) * std::pow(T(2.0f), T(10.0f) * (T(2.0f) * x - T(1.0f)))
336  * static_cast<T>(std::sin(T(13.0f) * std::numbers::pi_v<T> * x));
337  }
338  else
339  {
340  return T(1.0f)
341  - T(0.5f) * std::pow(T(2.0f), T(10.0f) * (T(1.0f) - T(2.0f) * x))
342  * static_cast<T>(std::sin(T(13.0f) * std::numbers::pi_v<T> * x));
343  }
344 }
345 constexpr auto elastic_in_out = elastic_in_out_func<float>;
346 
347 
348 
349 template<class T>
350 inline T back_in_func(T x) noexcept
351 {
352  return x * (std::pow(x, T(2.0f)) - static_cast<T>(std::sin(std::numbers::pi_v<T> * x)));
353 }
354 constexpr auto back_in = back_in_func<float>;
355 
356 
357 
358 template<class T>
359 inline T back_out_func(T x) noexcept
360 {
361  const T fInv = T(1.0f) - x;
362  return T(1.0f) - fInv * (fInv * fInv - static_cast<T>(std::sin(std::numbers::pi_v<T> * fInv)));
363 }
364 constexpr auto back_out = back_out_func<float>;
365 
366 
367 
368 template<class T>
369 inline T back_in_out_func(T x) noexcept
370 {
371  if (x < T(0.5f))
372  {
373  const T f2t = T(2.0f) * x;
374  return T(0.5f) * f2t * (f2t * f2t - static_cast<T>(std::sin(std::numbers::pi_v<T> * f2t)));
375  }
376  else
377  {
378  const T fInv = T(2.0f) - T(2.0f) * x;
379  return T(1.0f) - T(0.5f) * fInv * (fInv * fInv - static_cast<T>(std::sin(std::numbers::pi_v<T> * fInv)));
380  }
381 }
382 constexpr auto back_in_out = back_in_out_func<float>;
383 
384 
385 
386 template<class T>
387 inline T bounce_out_func(T x) noexcept
388 {
389  if (x < T(4.0f) / T(11.0f))
390  {
391  return (T(121.0f) * std::pow(x, T(2.0f))) / T(16.0f);
392  }
393  else if (x < T(8.0f) / T(11.0f))
394  {
395  return T(363.0f) / T(40.0f) * std::pow(x, T(2.0f)) - T(99.0f) / T(10.0f) * x + T(17.0f) / T(5.0f);
396  }
397  else if (x < T(9.0f) / T(10.0f))
398  {
399  return T(4356.0f) / T(361.0f) * std::pow(x, T(2.0f)) - T(35442.0f) / T(1805.0f) * x + T(16061.0f) / T(1805.0f);
400  }
401  else
402  {
403  return T(54.0f) / T(5.0f) * std::pow(x, T(2.0f)) - T(513.0f) / T(25.0f) * x + T(268.0f) / T(25.0f);
404  }
405 }
406 constexpr auto bounce_out = bounce_out_func<float>;
407 
408 
409 
410 template<class T>
411 inline T bounce_in_func(T x) noexcept
412 {
413  return T(1.0f) - bounce_out_func<T>(T(1.0f) - x);
414 }
415 constexpr auto bounce_in = bounce_in_func<float>;
416 
417 
418 
419 template<class T>
420 inline T bounce_in_out_func(T x) noexcept
421 {
422  if (x < T(0.5f))
423  return T(0.5f) * bounce_in_func<T>(T(2.0f) * x);
424  else
425  return T(0.5f) * bounce_out_func<T>(T(2.0f) * x - T(1.0f)) + T(0.5f);
426 }
427 constexpr auto bounce_in_out = bounce_in_out_func<float>;
428 
429 } // namespace qx::easing
constexpr bool epsilon_greater_equal(T left, T right, T eps=std::numeric_limits< T >::epsilon())
Constexpr comparison function for a user defined epsilon values.
Definition: common.inl:38
constexpr bool epsilon_less_equal(T left, T right, T eps=std::numeric_limits< T >::epsilon())
Constexpr comparison function for a user defined epsilon values.
Definition: common.inl:32
double pow(T number, int nPower)
Power function for integer power.
Definition: common.inl:82