qxLib
integration.h
Go to the documentation of this file.
1 /**
2 
3  @file integration.h
4  @author Khrapov
5  @date 6.08.2022
6  @copyright © Nick Khrapov, 2022. All right reserved.
7 
8 **/
9 #pragma once
10 
11 #include <qx/recursive_lambda.h>
12 
13 #include <random>
14 
15 QX_PUSH_SUPPRESS_ALL_WARNINGS();
16 #include <glm/glm.hpp>
17 QX_POP_SUPPRESS_WARNINGS();
18 
19 namespace qx
20 {
21 
22 /**
23  @brief Integrate using rectangle rule
24  @param func - target function
25  @param x0 - left border
26  @param x1 - right border
27  @param nIntervalsPer1 - number of intervals per dx = 1
28  @tparam function_2d_t - function that takes double and returns double
29  @retval - approximate integral
30 **/
31 template<class function_2d_t>
32 inline double integrate_rectangle_rule(const function_2d_t& func, double x0, double x1, size_t nIntervalsPer1 = 10);
33 
34 /**
35  @brief Integrate using trapezoid rule
36  @param func - target function
37  @param x0 - left border
38  @param x1 - right border
39  @param nIntervalsPer1 - number of intervals per dx = 1
40  @tparam function_2d_t - function that takes double and returns double
41  @retval - approximate integral
42 **/
43 template<class function_2d_t>
44 inline double integrate_trapezoid_rule(const function_2d_t& func, double x0, double x1, size_t nIntervalsPer1 = 10);
45 
46 /**
47  @brief Integrate using adaptive midpoint
48  @param func - target function
49  @param x0 - left border
50  @param x1 - right border
51  @param fMaxSliceError - max error per one slice
52  @param nIntervalsPer1 - number of intervals per dx = 1
53  @param nMaxRecursion - max recursion depth
54  @tparam function_2d_t - function that takes double and returns double
55  @retval - approximate integral
56 **/
57 template<class function_2d_t>
58 inline double integrate_adaptive_midpoint(
59  const function_2d_t& func,
60  double x0,
61  double x1,
62  double fMaxSliceError,
63  size_t nIntervalsPer1 = 10,
64  size_t nMaxRecursion = 300);
65 
66 /**
67  @brief Integrate using probabilistic algorithm Monte Carlo
68  @param funcIsInside - func that returns
69  1 if point is inside shape with positive value
70  0 if point is not inside shape
71  -1 if point is inside shape with negative value
72  @param pos0 - left down corner coordinates
73  @param pos1 - right up corner coordinates
74  @param nPointsPerOneSquare - points per 1 square (more is better)
75  @tparam function_2d_t - function that takes double and returns double
76  @retval - approximate integral
77 **/
78 template<class function_2d_t>
79 inline double integrate_monte_carlo(
80  const function_2d_t& funcIsInside,
81  glm::dvec2 pos0,
82  glm::dvec2 pos1,
83  size_t nPointsPerOneSquare = 1000);
84 
85 } // namespace qx
86 
87 #include <qx/math/integration.inl>
double integrate_trapezoid_rule(const function_2d_t &func, double x0, double x1, size_t nIntervalsPer1=10)
Integrate using trapezoid rule.
Definition: integration.inl:32
double integrate_rectangle_rule(const function_2d_t &func, double x0, double x1, size_t nIntervalsPer1=10)
Integrate using rectangle rule.
Definition: integration.inl:14
double integrate_adaptive_midpoint(const function_2d_t &func, double x0, double x1, double fMaxSliceError, size_t nIntervalsPer1=10, size_t nMaxRecursion=300)
Integrate using adaptive midpoint.
Definition: integration.inl:50
double integrate_monte_carlo(const function_2d_t &funcIsInside, glm::dvec2 pos0, glm::dvec2 pos1, size_t nPointsPerOneSquare=1000)
Integrate using probabilistic algorithm Monte Carlo.