qxLib
Functions
integration.h File Reference
#include <qx/recursive_lambda.h>
#include <random>
#include <glm/glm.hpp>
#include <qx/math/integration.inl>

Go to the source code of this file.

Functions

template<class function_2d_t >
double qx::integrate_rectangle_rule (const function_2d_t &func, double x0, double x1, size_t nIntervalsPer1=10)
 Integrate using rectangle rule. More...
 
template<class function_2d_t >
double qx::integrate_trapezoid_rule (const function_2d_t &func, double x0, double x1, size_t nIntervalsPer1=10)
 Integrate using trapezoid rule. More...
 
template<class function_2d_t >
double qx::integrate_adaptive_midpoint (const function_2d_t &func, double x0, double x1, double fMaxSliceError, size_t nIntervalsPer1=10, size_t nMaxRecursion=300)
 Integrate using adaptive midpoint. More...
 
template<class function_2d_t >
double qx::integrate_monte_carlo (const function_2d_t &funcIsInside, glm::dvec2 pos0, glm::dvec2 pos1, size_t nPointsPerOneSquare=1000)
 Integrate using probabilistic algorithm Monte Carlo. More...
 

Detailed Description

Author
Khrapov
Date
6.08.2022

Definition in file integration.h.

Function Documentation

◆ integrate_adaptive_midpoint()

template<class function_2d_t >
double qx::integrate_adaptive_midpoint ( const function_2d_t &  func,
double  x0,
double  x1,
double  fMaxSliceError,
size_t  nIntervalsPer1 = 10,
size_t  nMaxRecursion = 300 
)
inline

Integrate using adaptive midpoint.

Parameters
func- target function
x0- left border
x1- right border
fMaxSliceError- max error per one slice
nIntervalsPer1- number of intervals per dx = 1
nMaxRecursion- max recursion depth
Template Parameters
function_2d_t- function that takes double and returns double
Return values
-approximate integral

Definition at line 50 of file integration.inl.

◆ integrate_monte_carlo()

template<class function_2d_t >
double qx::integrate_monte_carlo ( const function_2d_t &  funcIsInside,
glm::dvec2  pos0,
glm::dvec2  pos1,
size_t  nPointsPerOneSquare = 1000 
)
inline

Integrate using probabilistic algorithm Monte Carlo.

Parameters
funcIsInside- func that returns 1 if point is inside shape with positive value 0 if point is not inside shape -1 if point is inside shape with negative value
pos0- left down corner coordinates
pos1- right up corner coordinates
nPointsPerOneSquare- points per 1 square (more is better)
Template Parameters
function_2d_t- function that takes double and returns double
Return values
-approximate integral

Definition at line 107 of file integration.inl.

◆ integrate_rectangle_rule()

template<class function_2d_t >
double qx::integrate_rectangle_rule ( const function_2d_t &  func,
double  x0,
double  x1,
size_t  nIntervalsPer1 = 10 
)
inline

Integrate using rectangle rule.

Parameters
func- target function
x0- left border
x1- right border
nIntervalsPer1- number of intervals per dx = 1
Template Parameters
function_2d_t- function that takes double and returns double
Return values
-approximate integral

Definition at line 14 of file integration.inl.

◆ integrate_trapezoid_rule()

template<class function_2d_t >
double qx::integrate_trapezoid_rule ( const function_2d_t &  func,
double  x0,
double  x1,
size_t  nIntervalsPer1 = 10 
)
inline

Integrate using trapezoid rule.

Parameters
func- target function
x0- left border
x1- right border
nIntervalsPer1- number of intervals per dx = 1
Template Parameters
function_2d_t- function that takes double and returns double
Return values
-approximate integral

Definition at line 32 of file integration.inl.