qxLib
prime.h
Go to the documentation of this file.
1 /**
2 
3  @file prime.h
4  @author Khrapov
5  @date 6.08.2022
6  @copyright © Nick Khrapov, 2022. All right reserved.
7 
8 **/
9 #pragma once
10 
11 #include <cmath>
12 #include <random>
13 #include <vector>
14 
15 namespace qx
16 {
17 
18 /**
19  @brief Find all prime factors
20  @complexity O(sqrt(number))
21  @tparam I - Integral type
22  @param nValue - number for search
23  @retval - all prime factors vector
24 **/
25 template<class I>
26 inline std::vector<I> find_prime_factors(I nValue)
27 {
28  static_assert(std::is_integral_v<I>, "Integral required");
29 
30  std::vector<I> factors;
31 
32  bool bValueNegative = false;
33  if constexpr (std::numeric_limits<I>::min() < 0)
34  {
35  if (nValue < 0)
36  {
37  bValueNegative = true;
38  nValue = -nValue;
39  }
40  }
41 
42  if (nValue > 1)
43  {
44  while (nValue % 2 == 0)
45  {
46  factors.push_back(2);
47  nValue /= 2;
48  }
49 
50  I i = 3u;
51  I nMaxFactor = static_cast<I>(std::sqrt(nValue));
52  while (i <= nMaxFactor)
53  {
54  while (nValue % i == 0)
55  {
56  factors.push_back(i);
57  nValue /= i;
58  nMaxFactor = static_cast<I>(std::sqrt(nValue));
59  }
60 
61  i += 2;
62  }
63 
64  if (nValue > 1)
65  factors.push_back(nValue);
66  }
67 
68  if constexpr (std::numeric_limits<I>::min() < 0)
69  if (!factors.empty() && bValueNegative)
70  factors[0] = -factors[0];
71 
72  return factors;
73 }
74 
75 /**
76  @brief Find all primes between 2 and nMaxNumber
77  @details Sieve of Eratosthenes
78  @complexity O(nMaxNumber * log(log(number)))
79  @tparam I - Integral type
80  @param nMaxNumber - max number for search
81  @retval - all primes vector
82 **/
83 template<class I>
84 inline std::vector<I> find_primes(I nMaxNumber)
85 {
86  static_assert(std::is_integral_v<I>, "Integral required");
87 
88  std::vector<bool> isComposite(static_cast<size_t>(nMaxNumber) + 1, false);
89 
90  constexpr size_t first_composite_power_of_two = 4;
91  for (size_t i = first_composite_power_of_two; i < static_cast<size_t>(nMaxNumber) + 1; i += 2)
92  {
93  isComposite[i] = true;
94  }
95 
96  I nNextPrime = 3;
97  I nStopAt = static_cast<I>(std::sqrt(nMaxNumber + 1));
98  while (nNextPrime <= nStopAt)
99  {
100  for (I i = nNextPrime * 2; i < nMaxNumber + 1; i += nNextPrime)
101  isComposite[static_cast<size_t>(i)] = true;
102 
103  nNextPrime += 2;
104 
105  while (nNextPrime <= nMaxNumber && isComposite[static_cast<size_t>(nNextPrime)])
106  {
107  nNextPrime += 2;
108  }
109  }
110 
111  std::vector<I> primes;
112  primes.reserve(static_cast<size_t>(nMaxNumber / 2)); // approximate size
113 
114  for (I i = 2; i < nMaxNumber + 1; ++i)
115  if (!isComposite[static_cast<size_t>(i)])
116  primes.push_back(i);
117 
118  primes.shrink_to_fit();
119  return primes;
120 }
121 
122 /**
123  @brief Is number prime
124  @details 1.0 probability, high computational complexity
125  @complexity O(sqrt(number))
126  @param nValue - number
127  @retval - true if prime
128 **/
129 inline bool is_prime(size_t nValue)
130 {
131  return find_prime_factors(nValue).size() == 1;
132 }
133 
134 /**
135  @brief Is number prime with some probability
136  @param nValue - number
137  @param fProbability - probability (0, 1]
138  @retval - true is number is prime with some probability
139 **/
140 inline bool is_prime(size_t nValue, double fProbability)
141 {
142  if (fProbability < 0)
143  fProbability = -fProbability;
144 
145  if (fProbability >= 1 || std::fabs(fProbability) <= DBL_EPSILON)
146  return is_prime(nValue);
147 
148  constexpr double fLog2 = 0.30102999566; // std::log(2)
149 
150  const size_t nTests = static_cast<size_t>(std::ceil(std::log(1.0 / (1.0 - fProbability)) / fLog2));
151 
152  std::default_random_engine generator(static_cast<unsigned>(std::time(nullptr)));
153 
154  std::uniform_int_distribution<size_t> num_dist(2, nValue);
155 
156  for (size_t i = 0; i < nTests; i++)
157  {
158  const size_t nRandomNumber = num_dist(generator);
159  if (static_cast<size_t>(pow(nRandomNumber, static_cast<int>(nValue) - 1)) % nValue != 1)
160  {
161  return false;
162  }
163  }
164 
165  return true;
166 }
167 
168 } // namespace qx
double pow(T number, int nPower)
Power function for integer power.
Definition: common.inl:82
std::vector< I > find_primes(I nMaxNumber)
Find all primes between 2 and nMaxNumber.
Definition: prime.h:84
bool is_prime(size_t nValue)
Is number prime.
Definition: prime.h:129
std::vector< I > find_prime_factors(I nValue)
Find all prime factors.
Definition: prime.h:26